lunes, 29 de noviembre de 2010

Fotosíntesis (2º Bch)

FOTOSÍNTESIS

A. Concepto e importancia biológica
Proceso mediante el cual ciertos organismos son capaces de transformar la energía de la luz solar en energía
química (ATP y NADPH) y utilizarla para sintetizar compuestos orgánicos a partir de CO2 y H2O.

        Reacción global:       6CO2 + 6H2O ----> C6H12O6 + 6O2

Las plantas, algas y cianobacterias poseen clorofila como principal pigmento fotosintético y oxidan agua durante
el proceso fotosintético liberando oxígeno molecular; realizan una fotosíntesis oxigénica.
En cambio, las bacterias fotosintéticas verdes y púrpuras tienen bacterioclorofila como principal pigmento y no
oxidan el H2O, sino hidrógeno gaseoso o sulfuro de hidrógeno, por lo que no liberan oxígeno; realizan una fotosíntesis anoxigénica.

B. Fase luminosa (captación de energía)
Fotositema I (P700). Predomina la clorofila a. No asociado a la producción de O2.
Fotosistema II (P680). Asociado a la producción de O2.

Los pigmentos, transportadores y enzimas implicados en el proceso se encuentran en la membrana de los tilacoides.

1. Captación de energía por los fotosistemas.
Antena y centro de reacción

2. Reducción del NADP

3. Transporte de electrones y fotofosforilación
Proceso quimiosmótico de fosforilación.

4. Oxidación del agua.

5. Fotofosforilación cíclica.

C. Fase oscura. Ciclo de Calvin

Descubierto por M. Calvin utilizando al alga unicelular Chlorella a la que se le suministraba CO2 marcado con
14C.

El proceso ocurre en el estroma de los cloroplastos. Se pueden distinguir tres fases:

a) Fijación del CO2 a la ribulosa-1,5-difosfato.
b) Reducción del ácido 3-fosfoglicérico.
c) Formación de glucosa y regeneración de la ribulosa-1,5-difosfato.

Si queréis ver un resumen ya sabéis lo que tenéis que hacer...

Aquí tenéis una excelente presentación acerca de la fotosíntesis:

Anabolismo.ppt

Estas dos de Mc Graw no está mal:




Ahora os subo un vídeo que os ayudará a comprender este proceso:


Y para terminar una videoconferencia en la que se explica muy claramente todo el proceso.




Veamos ahora el Ciclo de Calvin un poco más en profuncidad. Recordad que esta fase es llamada, por desgracia, la fase oscura de la fotosíntesis, pero en realidad solo quiere decir que no necesita la luz para completarse.

sábado, 27 de noviembre de 2010

Cambio de unidades (1º ESO nBil)

Aquí os he buscado estas animaciones de cambios de unidades que seguro que os vendrán muy bien para repasar y acabar con los errores.
Elige el número de preguntas que quieres hacer (dale a 15, no seas flojo...) y responde sin prisa...



Y para hacer muuuuchas más actividades interactivas acerca del cambio de unidades, no dudes en pasarte por esta dirección (de donde he cogido la anterior animación)

Aquí podéis repasar los cambios de escalas de temperatura



Cálculo del volumen en sólidos irregulares (y regulares) (1º ESO nBil)

Aquí tienes tres objetos: Una corona, una roca de oro y una esfera metálica. ¿Sabrías calcular el volumen de las 3 cosas? ¿Y pasarlo a dm3 (decímetros cúbicos)? ¿Y a litros?

Pesar líquidos (1º ESO nBIL)

¿Sabrías calcular lo que pesa un líquido sin el recipiente que lo contiene?
Abajo tienes todo lo que necesitas...

Cálculo de la densidad. Hieron y Arquímedes (1º ESO nBIL)

Hierón II, rey de Siracusa en el siglo III a.C. y pariente de Arquímedes, tenía suficiente confianza en él para plantearle problemas aparentemente imposibles. Cierto orfebre le había fabricado una corona de oro. El rey no estaba muy seguro de que el artesano hubiese obrado rectamente; podría haberse guardado parte del oro que le habían entregado y haberlo sustituido por plata o cobre. Así que Hierón encargó a Arquímedes averiguar si la corona era de oro puro.
Arquímedes no sabía qué hacer. El cobre y la plata eran más ligeros que el oro. Si el orfebre hubiese añadido cualquiera de estos metales a la corona, ocuparían un espacio mayor que el de un peso equivalente de oro. Conociendo el espacio ocupado por la corona (es decir, su volumen) podría contestar a Hierón, lo que no sabía era cómo averiguar el volumen de la corona.
Arquímedes siguió dando vueltas al problema en los baños públicos. De pronto se puso en pie como impulsado por un resorte: se había dado cuenta de que su cuerpo desplazaba agua fuera de la bañera. El volumen de agua desplazado tenía que ser igual al volumen de su cuerpo. Para averiguar el volumen de cualquier cosa bastaba con medir el volumen de agua que desplazaba.
Arquímedes corrió a casa, gritando una y otra vez: "¡Eureka, Eureka!" ("¡Lo encontré, lo encontré!") .Llenó de agua un recipiente, metió la corona y midió el volumen de agua desplazada. Luego hizo lo propio con un peso igual de oro puro; el volumen desplazado era menor. El oro de la corona había sido mezclado con un metal más ligero, lo cual le daba un volumen mayor. El rey ordenó ejecutar al orfebre.
(En "Momentos estelares de la ciencia" de Isaac Asimov)

Ahora puedes hacer lo mismo que hizo Arquímedes. Para ello aquí tienes todo lo necesario para demostrar que la densidad de la corona no es la misma que la del oro. ¡Suerte!

miércoles, 24 de noviembre de 2010

Si lo dice un científico, va a misa (1º BCH - CMC)

A continuación os dejo un artículo de el periódico El País en el que se recoge la polémica opinión de Stefen Hawkings acerca de la necesidad o no de dios para explicar el origen del universo.

Este tema ha sido recurrente desde que existe la humanidad y hay ideas y opiniones para todos los gustos, pero al Sr. Hawkings, cuanto menos, hay que leerlo.


Si lo dice un científico, va a misa

Los investigadores están divididos: unos son creyentes y otros piensan que Dios es incompatible con la ciencia - ¿Es cometido de los laboratorios demostrar la existencia divina?

MÓNICA SALOMONE
EL PAÍS - Sociedad - 05-09-2010

Antes de decidirse a hacer el primer trasplante de órganos entre humanos, en 1954, el cirujano Joseph E. Murray, Nobel de Medicina en 1990, consultó a varios líderes religiosos: "Parecía lo natural", ha dicho Murray. Es solo uno de los múltiples ejemplos del vínculo entre religión y ciencia. Un nexo tan vigente aún hoy como encendidos han sido los debates sobre la investigación con células madre o la enseñanza de la teoría de la evolución -no en España pero sí en Estados Unidos-. Para muchos, estos asuntos trazan una frontera clara entre los científicos, que buscan respuestas con un método en teoría blindado a las propias creencias, y otra parte de la sociedad. La comunidad científica -vienen a decir- crece y se desarrolla al margen (a salvo) de la fe; la ciencia va a lo que va y no se ocupa de eventuales conflictos entre hechos demostrados experimentalmente y la religión. Pero entonces llega el físico Stephen W. Hawking, escribe que no hace falta Dios para explicar el Universo ... y se produce una tormenta mediática. ¿Por qué? ¿No se consideraba este tema una prueba superada?

Parece que no. La muralla entre Dios y la ciencia es permeable, la comunidad científica no es un reducto social libre de religión. Tampoco hay algo así como una postura científica oficial respecto a la cuestión religiosa. En 1997, un artículo en la revista Nature recogía los resultados de una encuesta sobre creencias religiosas de científicos: el 40% de los biólogos, físicos y matemáticos consultados dijo creer en un dios al que uno reza "a la espera de recibir respuesta". El trabajo, de Edward J. Larson (Universidad de Georgia), reproducía otra encuesta similar de 1914, que daba cifras muy parecidas. No todo el mundo acepta estos resultados, pero tampoco hay, o no se citan, estudios más recientes a este respecto en publicaciones de renombre.

Lo que sí hay ahora son científicos, de prestigio, que no solo se declaran creyentes, sino que consideran que hacerlo es casi un acto de rebeldía ante lo políticamente correcto en ciencia (ser ateo). Para otros, en cambio, ser un investigador de primera fila es simplemente incompatible con creer en Dios. También es animada la siguiente cuestión: ¿tiene la ciencia algo que decir sobre la necesidad de Dios para explicar el mundo? O esta otra: ¿hasta qué punto el subconsciente religioso de una sociedad influye en las conclusiones a las que llegan sus científicos?

"Dado que hay una ley como la gravedad, el Universo puede crearse de la nada y lo hace", escribe Hawking. "La creación espontánea es la razón de que haya algo en lugar de nada (...) No es necesario invocar a Dios para que encienda la luz y eche a andar el Universo". En realidad, la postura de Hawking no es nueva. En el prólogo de la primera edición de su obra superventas Breve historia del Universo, publicada en 1988, el astrónomo Carl Sagan escribe: "Hawking está intentando, como él mismo afirma, entender la mente de Dios. Y esto hace que sea aún más inesperada la conclusión de este esfuerzo: un Universo sin frontera en el espacio, sin principio ni final en el tiempo, y en el que un creador no tiene nada que hacer".

La postura de Hawking tampoco es nueva en la ciencia. Lo recuerda el cosmólogo británico John Peacock, participante en un reciente congreso sobre cosmología organizado en Benasque por Juan García Bellido y financiado por la Fundación BBVA: "Hace 200 años, el físico francés Laplace fue criticado por Napoleón por excluir a Dios de su explicación sobre cómo se formó el Sistema Solar; la famosa respuesta de Laplace fue: 'No necesito esa hipótesis'. Hawking está aplicando la lógica de Laplace a todo el Universo, en lugar de solo al Sistema Solar, pero la cuestión de fondo es la misma".

Ahora bien, Hawking no dice que Dios no exista. "Es fácil imaginar una prueba de la existencia de Dios", dice Peacock. "Si mañana viéramos que las estrellas se han movido para escribir en el firmamento el mensaje de que Dios existe, para mí sería bastante convincente. Pero una prueba de la no existencia de Dios es mucho más difícil de imaginar".

Sea o no difícil demostrar que Dios no existe, ¿compete eso a los científicos? "La existencia de Dios queda fuera del ámbito de la ciencia", dice Josh Frieman, investigador implicado en las misiones espaciales que exploran la radiación de fondo del Universo -una energía que llena todo el cielo y cuya existencia prueba que el Universo que conocemos empezó a expandirse tras un Big Bang hace 13.700 millones de años-. Por eso mismo, "las creencias de los cosmólogos no son relevantes para su trabajo como investigadores; muchos cosmólogos tienen intensas creencias religiosas, y muchos otros no".

Esa visión es compartida por Evencio Mediavilla, que investiga sobre galaxias en el Instituto de Astrofísica de Canarias: "A lo largo de la historia ha habido grandes pensadores y científicos creyentes y no creyentes. Parece que ahora en la comunidad científica hay una mayoría que se declararía indiferente o no creyente, pero no pienso que sea incompatible ser un buen científico y creer en Dios. Son asuntos separados".

Ahora bien, que la ciencia no pueda o deba buscar a Dios no significa que no pueda o deba investigar qué ocurrió antes del Big Bang, por ejemplo. El único límite para la ciencia es el propio método científico; toda pregunta que pueda ser sometida a este método es territorio científico: "Lo importante es que la ciencia descansa sobre fundamentos que se pueden poner a prueba experimentalmente", dice Frieman. "Es legítimo que los cosmólogos analicen qué pasó en torno al tiempo del Big Bang. Hawking y otros han explorado teorías en las que el Universo se crea a partir de la nada; es una posibilidad difícil de poner a prueba, pero viable. Por desgracia, nuestro conocimiento hoy en día sigue siendo insuficiente para dar esta cuestión por cerrada".

Pero el debate no acaba aquí. Para algunos la necesidad de Dios emerge de la propia ciencia, y es perfectamente lícito que esta intente responder a cuestiones religiosas. "Hoy parece que hablar de Dios [entre los científicos] es una especie de herejía, pero lo cierto es que la cosmología siempre ha sido, y sigue siendo, una ciencia muy cercana a los límites, a las preguntas fundamentales que todos nos hacemos", comenta Eduardo Battaner, astrofísico de la Universidad de Granada y autor de obras de divulgación como Un físico en la calle: fluidos, entropía y antropía. "La postura que afirma que la ciencia no puede responder a si Dios existe no me parece sincera. De hecho, hoy se sigue discutiendo si la cosmología apoya una creación en el principio, o no. El Big Bang no demuestra ni refuta la existencia de Dios, pero es un debate interesante y pertinente; no estoy de acuerdo con eso de que la ciencia y la religión van por caminos distintos, lo considero una pose: la cabeza es una sola, y todo, Dios y la ciencia, pasan en la cabeza".

Battaner ve a Dios "como una especie de razonamiento que puede salir de la ciencia". "Tengo, desde luego, muchas dudas, pero me parece vislumbrar una necesidad racional de Dios. No un dios que castiga a los malos y recompensa a los buenos, sino un dios como una necesidad científica. Me convence el argumento de lo contingente: el Universo podría no existir, yo podría no existir... es decir, todos somos contingentes; debe de haber algo que no lo sea".

Francis Collins, director del Instituto Nacional de Investigación en el Genoma Humano estadounidense, cristiano declarado, tiene una opinión similar. "Este no debería ser un tema tabú, pero a menudo lo es en círculos científicos", ha declarado a The New York Times. Collins no cree adecuado mantener completamente separados el trabajo como científico y las creencias religiosas. Pero esto no implica que dude de hechos ya establecidos por la ciencia, como la evolución: "Pedir a alguien que rechace [las evidencias a favor de la evolución] para demostrar que realmente ama a Dios... ¡Qué elección más horrible!". En su opinión, Dios hace falta para comprender al ser humano; sin él "no entenderíamos por qué estamos aquí". "La ciencia no tiene poder para abordar estas preguntas. Y ¿no son, al fin y al cabo, las más importantes que nos hacemos?".

Es cierto, dicen los historiadores de la ciencia, que el trabajo del científico debió de nacer de la misma curiosidad que hizo germinar la religión. Pero en cierto momento la ciencia labró su propio camino. "En época de Newton no se podía pensar en cuestiones científicas sin, tarde o temprano, llegar a la cuestión de Dios", explica José Ferreirós, catedrático de Lógica y Filosofía de la Ciencia de la Universidad de Sevilla. "La cosa dejó de ser así en el siglo XIX, antes de Einstein. ¿Por qué cambió? Porque 'Dios ha muerto' en la sociedad, como dijo Nietzsche. El desarrollo de la ciencia y de la filosofía moderna tuvo mucho que ver con esa muerte, pero también la Revolución Francesa, el fin del Antiguo Régimen". Para Ferreirós, "el tema religioso es hoy más que nada un asunto privado".

No deja de ser curioso que la teoría del Big Bang la propusiera precisamente un sacerdote. En 1927, el belga Georges Lamaitre postuló que el Universo está en expansión y que, por tanto, debió de haber un comienzo -describió su teoría como "un huevo cósmico explotando en el momento de la creación"-. Pocos años después, el astrónomo Edwin Hubble observó que, efectivamente, las galaxias se alejan entre sí. Pero durante la mayor parte del siglo XX, y hasta que hace unas décadas las pruebas a favor del Big Bang empezaron a considerarse irrefutables, la idea de que hubo un tiempo cero fue muy discutida -entre otros por el prestigioso físico Fred Hoyle, precisamente el autor del término Big Bang, que defendía un Universo sin principio ni fin y que vinculaba el éxito del Big Bang precisamente a su buen encaje con la idea religiosa de creación-.

En cualquier caso, no es la cosmología la única rama de la ciencia que roza la frontera con la religión. La vida y su origen son otro frente abierto. En una obra reciente el Nobel de Química Christian de Duve, La vida en evolución: moléculas, mente y significado, explica cómo ha llegado a la conclusión personal de que "el diálogo entre ciencia y religión es imposible", dado que la segunda rechaza los descubrimientos de la primera.

Quizás, sorprendentemente, la matemática es otra de las áreas donde el debate ciencia-religión es más activo. "Los matemáticos discrepan sobre si las matemáticas son un constructo humano o si se descubren porque ya estaban en la naturaleza (¿dadas por Dios?)", señala Manuel de León, director del Instituto de Ciencias Matemáticas. "Creo que las descubrimos aunque les demos una determinada forma que puede diferir de unos a otros, y las descubrimos porque son al final las leyes que rigen el Universo; esa física que Hawkings aduce como causa de la creación del Universo se expresa en términos matemáticos". Y está la simple admiración ante lo que los matemáticos llaman belleza, "esa sensación estética que a algunos les lleva a considerar las matemáticas como la verdad última", dice De León.

Y, cómo no, a la cuestión ciencia-religión no le falta un toque irónico: ¿Qué pasa cuando los científicos ocupan en la sociedad el papel de... sacerdotes? O sea: ¿Por qué lo que dice Hawking va a misa? "La opinión de un científico acerca de este tema no tiene por qué ser a priori más interesante que la de cualquier otra persona", dice Evencio Mediavilla. "Sería infantil crear una iglesia de científicos no creyentes".
Noticias relacionadas

El Gran Designio

Hawking irrita a líderes religiosos por negar a Dios

Stephen Hawking excluye a Dios como creador del Universo



Una polémica recurrente

La relación entre ciencia y religión es un tema recurrente, como lo prueban las siguientes citas.

- Albert Einstein, físico: "No hay duda de que la ciencia no refutará nunca la doctrina de un Dios personal que interviene en los acontecimientos naturales, donde esta doctrina siempre puede afianzarse en aquellos campos en los que aún no ha sido capaz de afianzarse el conocimiento científico".

- Steven Weinberg, físico: "Con o sin religión, la gente buena hará el bien y la gente mala hará el mal, pero para que la gente buena haga el mal, hace falta la religión".

- Johan Allen Paulos, matemático: "Parece que las mentiras subyacentes tras la fe pueden hacer más soportable la vida diaria" (Elogio de la irreligión)

- Paul Davies, físico: "No podemos llegar al conocimiento completo debido a las mismas normas de razonamiento que nos llevan en principio a buscar tal explicación. Si queremos progresar más, tenemos que aceptar una comprensión distinta de la explicación racional". (La mente de Dios).

domingo, 21 de noviembre de 2010

Citoesqueleto

Las células eucariotas tienen tres tipos de filamentos citoesqueléticos: microfilamentos, filamentos intermedios y microtúbulos.

Microfilamentos (actina). Los microfilamentos tienen un diámetro de unos 7 nm ó 5 nm. Están formadas por una proteína globular llamada actina. Esta actina se puede encontrar asociada a otras proteínas: Proteínas estructurales: que permiten la unión de los filamentos de actina Proteínas reguladoras: la más importante es la miosina que permite la contracción muscular al permitir que la actina se desplace sobre ella. Las funciones de los microfilamentos de actina son la contracción muscular, la formación de pseudópodos, el mantenimiento de la morfología celular y, en la citocinesis de células animales, forma un anillo contráctil que divide la célula en dos.
Filamentos intermedios. Son filamentos de proteína fibrosa de unos 12 nm de diámetro, son los componentes del citoesqueleto más estables, dando soporte a los orgánulos (por sus fuertes enlaces), y heterogéneos. Su función principal es la organización de la estructura tridimensional interna de la célula (por ejemplo, forman parte de la envuelta nuclear y de los sarcómeros). También participan en algunas uniones intercelulares (desmosomas).
Microtúbulos. Los microtúbulos son estructuras tubulares de 25 nm de diámetro que se originan en los centros organizadores de microtúbulos y que se extienden a lo largo de todo el Citoplasma. Se pueden polimerizar y despolimerizar según las necesidades de la célula. Se hallan en las células eucariotas y están formados por la polimerización de un dímero de dos proteínas globulares, la alfa y la beta tubulina. Cada microtúbulo está compuesto de 13 protofilamentos formados por los dímeros de tubulina. Intervienen en diversos procesos celulares que involucran desplazamiento de vesículas de secreción, movimiento de orgánulos, transporte intracelular de sustancias, así como en la división celular (mitosis y meiosis), ya que forman el huso mitótico). Además, constituyen la estructura interna de los cilios y los flagelos. Los microtúbulos son más flexibles pero más duros que la actina.

Aquí tenéis un fantástico vídeo hecho por el equipo de BioVisions

sábado, 20 de noviembre de 2010

Transporte a través de la membrana celular.

La bicapa lipídica de la membrana actúa como una barrera que separa dos medios acuosos, el medio donde vive la célula y el medio interno celular.
Las células requieren nutrientes del exterior y deben eliminar sustancias de desecho procedentes del metabolismo y mantener su medio interno estable. La membrana presenta una permeabilidad selectiva, ya que permite el paso de pequeñas moléculas, siempre que sean lipófilas, pero regula el paso de moléculas no lipófilas.
El paso a través de la membrana posee dos modalidades:
Una pasiva, sin gasto de energía, y otra activa , con consumo de energía.

1.El transporte pasivo. Es un proceso de difusión de sustancias a través de la membrana. Se produce siempre a favor del gradiente, es decir, de donde hay más hacia el medio donde hay menos. Este tranporte puede darse por:
a. Difusión simple . Es el paso de pequeñas moléculas a favor del gradiente; puede realizarse a través de la bicapa lipídica o a través de canales proteícos.

Difusión simple a través de la bicapa (1). Así entran moléculas lipídicas como las hormonas esteroideas, anestésicos como el éter y fármacos liposolubles. Y sustancias apolares como el oxígeno y el nitrógeno atmosférico. Algunas moléculas polares de muy pequeño tamaño, como el agua, el CO2, el etanol y la glicerina, también atraviesan la membrana por difusión simple. La difusión del agua recibe el nombre de ósmosis

Difusión simple a través de canales (2). Se realiza mediante las denominadas proteínas de canal. Así entran iones como el Na+, K+, Ca2+, Cl-. Las proteínas de canal son proteínas con un orificio o canal interno, cuya apertura está regulada, por ejemplo por ligando, como ocurre con neurotransmisores u hormonas, que se unen a una determinada región, el receptor de la proteína de canal, que sufre una transformación estructural que induce la apertura del canal.

b. Difusión facilitada (3). Permite el transporte de pequeñas moléculas polares, como los aminoácidos, monosacáridos, etc, que al no poder, que al no poder atravesar la bicapa lipídica, requieren que proteínas trasmembranosas faciliten su paso. Estas proteínass reciben el nombre
de proteínas transportadoras o permeasas que, al unirse a la molécula a transportar sufren un cambio en su estructura que arrastra a dicha molécula hacia el interior de la célula.

2.El transporte activo (4). En este proceso también actúan proteínas de membrana, pero éstas requieren energía, en forma de ATP, para transportar las moléculas al otro lado de la membrana. Se produce cuando el transporte se realiza en contra del gradiente electroquímico. Son ejemplos de transporte activo la bomba de Na/K, y la bomba de Ca.
La bomba de Na+/K+ Requiere una proteína transmembranosa que bombea Na+ hacia el exterior de la membrana y K+ hacia el interior. Esta proteína actúa contra el gradiente gracias a su actividad como ATP-asa, ya que rompe el ATP para obtener la energía necesaria para el transporte.

Por este mecanismo, se bombea 3 Na+ hacia el exterior y 2 K+ hacia el interior, con la hidrólisis acoplada de ATP. El transporte activo de Na+ y K+ tiene una gran importancia fisiológica. De hecho todas las células animales gastan más del 30% del ATP que producen ( y las células nerviosas más del 70%) para bombear estos iones.

Uniones Celulares.

Uniones celulares: Desmosomas, uniones estrechas, uniones comunicantes y plasmodesmos.





La membrana biológica. Modelo de mosaico fluido.

En la membrana plasmática, los lípidos se disponen formando una bicapa. Las proteínas se intercalan en esa bicapa de lípidos dependiendo de las interacciones con las regiones de la zona lipídica. Existen dos tipos de proteínas según su disposición en la bicapa:

Proteínas integrales (o intrínsecas). Embebidas en la bicapa lipídica, atraviesan la membrana una o varias veces, asomando por una o las dos caras (proteínas transmembrana); o bien mediante enlaces covalentes con un lípido o a un glúcido de la membrana. El aislamiento de ella requiere la ruptura de la bicapa.
Glucoproteínas. Se encuentran atravesando toda la capa de la membrana celular, su nombre es debido a que contiene glúcidos.

Proteínas periféricas (o extrínsecas). A un lado u otro de la bicapa lipídica, pueden estar unidas débilmente por enlaces no covalentes. Fácilmente separables de la bicapa mediante soluciones salinas, sin provocar su ruptura. Aparecen en la membrana interna y carecen de proteínas transmembranas.
Este modelo fue desarrollado para demostrar la asimetría entre ambas capas, lo que explicaría porque no entran los mismos nutrientes que los que salen.

Modelo de mosaico fluido de Singer y Nicholson.

Centrosoma, Cilios y flagelos

Envolturas celulares. Citoplasma, centrosoma, cilios y flagelos.


Los cilios y flagelos son estructuras complejas con más de 250 proteínas diferentes. Ambos contienen una estructura central de microtúbulos y otras proteínas asociadas, denominadas conjuntamente como axonema, rodeado todo ello por membrana celular. Un axonema consta de 9 pares de microtúbulos exteriores que rodean a un par central. A esta disposición se la conoce como 9x2 + 2.
Esquema donde se indican los principales componentes de la estructura de un cilio o un flagelo. En los cilios primarios el par central de microtúbulos está ausente.
Esta disposición se mantiene gracias a un entramado de conexiones proteicas internas. Las parejas de microtúbulos externos están conectadas entre sí mediante una proteína denominada nexina. Los túbulos A de cada pareja están conectados por radios proteicos a un anillo central que encierra al par central de microtúbulos. En los microtúbulos externos aparece una proteína motora asociada llamada dineína que está implicada en el movimiento de cilios y flagelos.

Los microtúbulos se originan por polimerización a partir de una estructura localizada en el citoplasma celular periférico denominada cuerpo basal. La estructura del cuerpo basal es similar a la de los centriolos, es decir, 9 tripletes de microtúbulos que se disponen formando una estructura cilíndrica. Carece del par central (9x3 + 0). Entre el cuerpo basal y el axonema del cilio existe una zona de transición que posee sólo los 9 dobletes típicos del cilio pero no el par central. Éste se formará a partir de una estructura llamada placa basal, localizada entre la zona de transición y el doblete interno. La parte del cuerpo basal más próxima al interior celular se ancla al citoesqueleto mediante estructuras proteicas denominadas radios ciliares.

LA CÉLULA ANIMAL Y VEGETAL

Aquí tenéis unas excelentes animaciones acerca de la célula animal:
(Todas han sido recopiladas de http://cienciasnaturales.es)

La célula animal y la célula vegetal

lunes, 15 de noviembre de 2010

El Origen de la vida


A continuación podéis ver el siguiente video acerca, también, del origen de la vida

lunes, 8 de noviembre de 2010

De ADN a Cromosoma

Aquí podéis ver en esta exelente animación el super-enrollamiento de una cadena de ADN hasta que forma un cromosoma metafásico.

lunes, 1 de noviembre de 2010

Cell Game

Build a cell, fight off viruses, survive harsh worlds, and save the Platypus species!



It turns out destruction is imminent for the homeworld of platypus biologists Spike and Syndey, and it's up to you to save them!... the part of "you" here being played by a cell in the first stages of its growth, barely able to defend itself against incoming threats or generate enough energy to move.


This game is one part resource management, one part puzzle, one part strategy, and even one part funny. Oh, and did I mention? It's... educational!


If you want to play the game on full screen, please click here





Instructions are provided through in game tutorials.In general, most interaction is done through clicking, though arrows/ASDW can scroll and mouse wheel will zoom (eventually). You can disable virus wave zooming in the Menu.




Have fun!

P.S. There is no universally agreed plural of "platypus" in the English language. Scientists generally use "platypuses" or simply "platypus". Colloquially the term "platypi" is also used for the plural, although this is technically incorrect and a form of pseudo-Latin