domingo, 29 de abril de 2018

Vitaminas: Concepto, clasificación y carencias

Vitamina: cualquiera de un grupo de compuestos orgánicos esenciales en el metabolismo y necesarios para el crecimiento y, en general, para el buen funcionamiento del organismo. Las vitaminas participan en la formación de hormonas, células sanguíneas, sustancias químicas del sistema nervioso y material genético. Las diversas vitaminas no están relacionadas químicamente, y la mayoría de ellas tiene una acción fisiológica distinta.

Por lo general actúan como catalizadores, combinándose con las proteínas para crear metabólicamente enzimas activas que a su vez producen importantes reacciones químicas en todo el cuerpo. Sin las vitaminas muchas de estas reacciones tardarían más en producirse o cesarían por completo.
Las vitaminas deben ser aportadas a través de la alimentación, ya que, a excepción de la vitamina D, no pueden ser sintetizadas por el cuerpo humano.

Clasificación
Las 13 vitaminas identificadas se clasifican de acuerdo a su capacidad de disolución en grasa (vitaminas liposolubles) o en agua (vitaminas hidrosolubles).

  • Las vitaminas liposolubles, A, D, E y K, suelen consumirse junto con alimentos que contienen grasa y, debido a que se pueden almacenar en la grasa del cuerpo, no es necesario tomarlas todos los días. 
    • La vitamina A es un alcohol primario de color amarillo pálido que deriva de los carotenos presentes en los vegetales. Afecta a la formación y mantenimiento de la piel, membranas mucosas, huesos y dientes, a la vista y a la reproducción. Uno de los primeros síntomas de insuficiencia es la ceguera nocturna (dificultad en adaptarse a la oscuridad). Otros síntomas son excesiva sequedad en la piel; falta de secreción de la membrana mucosa, lo que produce susceptibilidad a la invasión bacteriana, y sequedad en los ojos debido al mal funcionamiento del lagrimal, importante causa de ceguera en los niños de países poco desarrollados. El cuerpo obtiene la vitamina A de dos formas. Una es fabricándola a partir de los carotenos, precursores de la vitamina A, que se encuentran en vegetales como la zanahoria, el brécol, la calabaza, las espinacas, la col y la batata. La otra es absorbiéndola ya lista de organismos que se alimentan de vegetales.
    • Vitamina D Hay dos vitaminas D: la vitamina D2 (calciferol) y la vitamina D3 (colecalciferol). Estas vitaminas son necesarias para la formación normal de los huesos y para la absorción de calcio y fósforo. También protegen los dientes y huesos contra los efectos del bajo consumo de calcio, haciendo un uso más efectivo del calcio y el fósforo. Llamadas también “vitaminas solares”, las vitaminas D se obtienen de la yema de huevo, los aceites de hígado de pescado, el atún y la leche enriquecida con estas vitaminas. También se fabrican en el cuerpo cuando los esteroles, que se encuentran en muchos alimentos, se desplazan a la piel y reciben la radiación solar. La insuficiencia de estos compuestos, denominada raquitismo, se da rara vez en los climas tropicales, donde hay abundancia de rayos solares, pero hubo un tiempo en que era común entre los niños de las ciudades poco soleadas antes de empezar a utilizar leche enriquecida.
    • Vitamina E El papel de la vitamina E en el cuerpo humano aún no se ha establecido claramente, pero se sabe que es un nutriente esencial en diversas especies de vertebrados. En experimentos realizados en animales se ha visto que la carencia de esta vitamina puede originar esterilidad, provocando, en el macho, la aparición de lesiones en el tejido testicular, o impidiendo, en las hembras, completar la gestación. Esta vitamina participa en la formación de glóbulos rojos, músculos y otros tejidos y en la prevención de la oxidación de la vitamina A y las grasas. Se encuentra en aceites vegetales, germen de trigo, hígado y verduras de hoja verde.  
    • Vitamina K La vitamina K es necesaria principalmente para la coagulación de la sangre. Ayuda a la formación de la protrombina, enzima necesaria para la producción de fibrina en la coagulación. Las fuentes más ricas en vitamina K son la alfalfa y el hígado de pescado, que se emplean para hacer preparados con concentraciones de esta vitamina. Las fuentes dietéticas incluyen todas las verduras de hoja verde, la yema de huevo, el aceite de soja (soya) y el hígado.
  •  Las vitaminas hidrosolubles, las ocho del grupo B y la vitamina C, no se pueden almacenar y, por tanto, se deben consumir con frecuencia, preferiblemente a diario (a excepción de algunas vitaminas B, como veremos después).
    • Vitamina B. Conocidas también con el nombre de complejo vitamínico B, son sustancias frágiles, solubles en agua, varias de las cuales son sobre todo importantes para metabolizar los hidratos de carbono o glúcidos. Clasificación B1, B2, B3, B6 y B12. 
      • Vitamina B12. La anemia perniciosa es un tipo de anemia por deficiencia de vitamina B12. El cuerpo necesita esta vitamina para producir glóbulos rojos. Esta vitamina se obtiene del consumo de alimentos como carne de res, carne de aves, mariscos, huevos y productos lácteos. Los veganos estrictos son un grupo de riesgo de este tipo de anemia.
      • El ácido fólico o folacina (B9) es una coenzima necesaria para la formación de proteínas estructurales y hemoglobina; su insuficiencia en los seres humanos es muy rara. Tomada en el embarazo reducen los casos de espina bífida en un 70% El ácido fólico es efectivo en el tratamiento de ciertas anemias y la psilosis. Se encuentra en vísceras de animales, verduras de hoja verde, legumbres, frutos secos, germen de trigo y levadura de cerveza. El ácido fólico se pierde en los alimentos conservados a temperatura ambiente y durante la cocción. A diferencia de otras vitaminas hidrosolubles, el ácido fólico se almacena en el hígado y no es necesario ingerirlo diariamente. 
      • El ácido pantoténico (B5) forma parte de la estructura de la coenzima A, importante en varias fases del metabolismo de los hidratos de carbono, las grasas y las proteínas. Las fuentes más abundantes de este elemento son los huevos, el hígado, la levadura, los cereales y las verduras. 
    • Vitamina C La vitamina C es importante en la formación y conservación del colágeno. La proteína que sostiene muchas estructuras corporales y que representa un papel muy importante en la formación de huesos y dientes. También favorece la absorción de hierro procedente de los alimentos de origen vegetal. El escorbuto es la clásica manifestación de insuficiencia grave de ácido ascórbico. Sus síntomas se deben a la pérdida de la acción cimentadora del colágeno, y entre ellos están las hemorragias, caída de dientes y cambios celulares en los huesos de los niños.

Recomendaciones para evitar deficiencias de vitaminas
La principal fuente de vitaminas son los vegetales crudos, por ello, hay que igualar o superar la recomendación de consumir 5 raciones de vegetales o frutas frescas al día.
Hay que evitar los procesos que produzcan perdidas de vitaminas en exceso:
Hay que evitar cocinar los alimentos en exceso. A mucha temperatura o durante mucho tiempo. Echar los alimentos que se vayan a cocer, en el agua ya hirviendo, en vez de llevar el agua a ebullición con ellos dentro.
Evitar que los alimentos estén preparados (cocinados, troceados o exprimidos), mucho tiempo antes de comerlos. La piel de las frutas o la cáscara de los cerealescontiene muchas vitaminas, por lo que no es conveniente quitarla.
Elegir bien los alimentos a la hora de comprarlos, una mejor calidad redunda en un mayor valor nutritivo.
Aunque la mayoría de los procesamientos perjudica el contenido vitamínico, algunos procesos biológicos pueden incrementar el contenido de vitaminas en los alimentos, como por ejemplo:
La fermentación del pan, quesos u otros alimentos.
La fabricación de yogur mediante bacterias.
El curado de jamones y embutidos.
El germinado de semillas, para ensaladas.

Los procesos industriales, normalmente suelen destruir las vitaminas. Pero alguno puede ayudar a que se reduzcan las pérdidas: El vaporizado del arroz consigue que las vitaminas y minerales de la cáscara se peguen al corazón del arroz y no se pierda tanto al quitar la cáscara. Hay que recordar que el arroz con cáscara tiene 5 veces más vitamina b1 (y otras vitaminas) que el que está pelado. La congelación produce pérdidas en la calidad de las moléculas de algunas vitaminas inactivando parte de ellas, es mejor consumir los alimentos 100% frescos. Los procesos de esterilización UHT, muy rápidos, evitan un exceso de perdidas vitaminicas que un proceso más lento bien puede neutralizar el efecto de algunas enzimas destructoras de vitaminas como las que se encuentran dispersas en el jugo de naranja. No consumir vitaminas en los niveles apropiados (contenidas en los alimentos naturales) puede causar graves enfermedades.

viernes, 10 de noviembre de 2017

Rosalind Franklin. La gran olvidada


La ciencia y la vida ni pueden ni deben estar separadas. Para mí la ciencia da una explicación parcial de la vida. Tal como es se basa en los hechos, la experiencia y los experimentos... Estoy de acuerdo en que la fe es fundamental para tener éxito en la vida, pero no acepto tu definición de fe, la creencia de que hay vida tras la muerte. En mi opinión, lo único que necesita la fe es el convencimiento de que esforzándonos en hacer lo mejor que podemos nos acercaremos al éxito, y que el éxito de nuestros propósitos, la mejora de la humanidad de hoy y del futuro, merece la pena de conseguirse”.
 Así se expresaba Rosalind Franklin hacia 1940, cuando tenía veinte años, en una carta dirigida a su padre con quien, como buena e inteligente hija, discrepaba en varias cuestiones. Rosalind es la científica con cuyos datos Watson y Crick formularon en 1953 el modelo de doble hélice que describe la estructura del ADN, uno de los hitos de la Biología del siglo XX. ¿Por qué son ellos los únicos "famosos"?
Pese a ser la científica que obtuvo los datos que permitieron definir que el ADN tiene estructura de doble hélice, no fue premiada con el Nobel. Había fallecido en 1958, cuatro años antes de que  la  Academia  Sueca  reconociese  la  importancia  del  descubrimiento.  Lo  más  sarcástico  es que el premio se lo dieron a las personas que habían usado sus datos a hurtadillas, que, por lo que  luego  han  manifestado,  le  mostraron  su  desdén  como  científica,  no  la  apreciaban  mucho  como persona y le amargaron los dos años de su carrera en el King's College de Londres. 

      Un mundo de hombres?
Rosalind Elsie Franklin nació en Londres el 25 de julio de 1920, hija de un banquero judíoobtuvo un título universitario, en física, química y matemáticas, en el Newnham College, el colegio mayor femenino de la Universidad de Cambridge. En esos años a las mujeres Cambridge no les otorgaba el grado de Licenciado, no las consideraba parte del claustro y limitaba el número de doctorandas a un 10% como mucho. Antes de trabajar con el ADN, Rosalind estudió la porosidad del carbón y tras obtener su doctorado se especializó en la técnica de difracción de rayos X, la que luego sirvió para obtener una fotografía ya célebre, la foto 51 que Maurice Wilkins mostró indiscretamente a un joven americano, James Watson que en colaboración con el británico Francis Crick, estaba obsesionado por vencer a su compatriota Linus Pauling en la carrera por descifrar la estructura del ADN.
Foto 51

La foto 51. La difracción de los rayos X a través de las moléculas de ADN produce una característica imagen en X. En su conjunto la interpretación de la foto permite deducir que el ADN es una doble hélice. 

Confidencias desveladas En el culebrón de la doble hélice la foto 51, clave para que Watson y Crick formulasen el modelo de la estructura del ADN, la había obtenido Rosalind Franklin utilizando la forma B del ADN. Hasta entonces solo se disponía de datos de otra forma, la A, mucho menos hidratada y con la que no se había podido sacar ninguna conclusión. Watson deja bien claro en su libro de autobombo (“La doble hélice”) que una tarde a mediados de enero de 1953 Wilkins no solo le comentó los resultados de Rosalind Franklin, sino que le mostró la foto sin que ella lo supiera. Watson y Crick también conocían un informe que Rosalind había enviado para una evaluación, algo que debiera ser confidencial, pero que el evaluador (Max Perutz) debió filtrar sin muchos miramientos. En su informe se concluía que en la estructura del ADN las bases se sitúan hacia el interior, un dato crucial para resolverla, y en  su foto 51 quedaba claro que la estructura era una doble hélice.

¿Por qué la ignoraron? Nunca sabremos si Rosalind Franklin llegó a saber que se habían divulgado sus datos sin su permiso, los otros actores de la historia nunca lo afirmaron pero tampoco lo negaron. Ni Watson ni Crick la nombraron en sus discursos de aceptación del Nobel. Fue Wilkins, precisamente el elemento del trío con quien Rosalind tuvo más problemas, a quien Crick convenció para que la mencionase. Cuando se trasladó a la Universidad de Birkbeck fue prácticamente obligada a abandonar el trabajo sobre el ADN y comenzó a trabajar sobre la estructura de los virus. En este tema publicó importantes resultados. Encontró por ejemplo que el material genético del virus mosaico del tabaco, un ARN, se enrosca en el interior del largo tubo de proteínas que forma su cápsida. James Watson en su discurso de aceptación del Nobel trató exactamente del papel del ARN, incluyendo la estructura de los virus que lo contienen, y logró no mencionarla ni una sola vez. No parece que Rosalind albergase rencores frente al hecho de que su trabajo sobre la estructura del ADN solo ocupó el tercer lugar en el número de la revista Nature en la que se publicaron a la vez la teoría de Wattson y Crick, los resultados de Wilkins y los de ella misma. En 1954 viajó por los Estados Unidos con Watson, con quien intercambiaba información sobre el virus mosaico del tabaco, y en 1956 hizo un viaje por España en compañía de Crick y su esposa. Va a ser difícil saber si el cáncer de ovario que el 16 de abril de 1959 acabó con su vida fue una enfermedad laboral. Las prácticas de seguridad laboral por aquéllos años aún distaban de proteger debidamente al operario, y la manipulación de fuentes de rayos X es una labor peligrosa.

Un debate perdurable. En 1968 Watson publicó su libro en el que casi no habla bien de nadie salvo de sí mismo, pero la parcialidad de lo que cuenta de Rosalind Franklin removió la historia del descubrimiento clave de la Biología del pasado siglo. En 1975 Ann Sayre le refutó en su volumen “Rosalind Franklin and DNA”. Sus conclusiones se han criticado por dar demasiado peso al sexismo de los ambientes científicos de la Inglaterra de mediados de siglo. Por otro lado el comportamiento de los colegas de Rosalind con respecto a la comunicación indebida de sus resultados y a la anómala asignación de prioridad científica en las publicaciones han ido sin embargo tomando mayor importancia, en especial al publicarse en 2002 el libro de Brenda Maddox “Rosalind Franklin; The dark lady of DNA”. También Maurice Wilkins, quizás el principal obstáculo que tuvo Rosalind en Kings College, acabó por escribir en 2003 un libro autoexculpatorio, “The third Man of the Double Helix”. Lynn Osman Elkin ha escrito: “Hubo suficiente gloria en el trabajo de los cuatro como para que pudiera ser compartida”. Pero yo diría que lo que hubo en el descubrimiento de la doble hélice fue suficiente para que la estructura del ADN no solo sea una lección de intuición y trabajo científico, sino una excelente fuente para evaluar el comportamiento de los científicos a la luz de la ética.  

Desgraciadamente, ciencia y ética no van siempre de la mano...al fin y al cabo, los científicos son, casi siempre, humanos.

En este vídeo podemos ver, con algo de nivel como se pudo deducir la estructura de doble hélice del ADN a partir de la fotografía 51



Autor del artículo La Dama ausente: Rosalind Franklin: Miguel Vicente

sábado, 13 de octubre de 2012

Bioelementos, Biomoléculas y demás.

Ningún Elemento químico es exclusivo de los seres vivos y todos se encuentran también en la Naturaleza. Sin embargo, hay sólo 27 que forman parte permanente de la vida y otros 60 pueden aparecer ocasionalmente.
Estos elementos se denominan elementos biogénicos o bioelementos. Según su importancia y abundancia se clasifican en:
  • Primarios: carbono, hidrógeno, oxígeno y nitrógeno. Representan algo más del 96% del peso de cualquier organismo. Son elementos imprescindibles para la creación de materia orgánica.
  • Secundarios indispensables: fósforo, azufre, sodio, potasio, calcio, magnesio y cloro. Constituyen el 3% en peso aproximadamente. Son bioelementos necesarios para la vida de la célula.
  • Oligoelementos o elementos traza: Además de los señalados existen otros que son necesarios para el funcionamiento celular y que en conjunto representan menos del 1%. No todos forman parte de los seres vivos. Cabe citar por ejemplo el hierro, cinc, bromo, yodo y silicio.
Función de los bioelementos primarios y secundarios

El carbono y el hidrógeno constituyen la estructura básica de las moléculas orgánicas y, junto al oxígeno, son los principales componentes. El nitrógeno participa en la construcción de proteínas y ácidos nucleicos. El fósforo forma parte de los ácidos nucleicos y sus enlaces son utilizados en la obtención de energía. El azufre constituye parte de la mayoría de las proteínas.

El resto de bioelementos secundarios se encuentran en el interior de la célula disociados como iones. El sodio potasio y cloro participan en mantener el grado de salinidad así como en el impulso nervioso. El calcio actúa como constitutivo de estructuras esqueléticas, en el mecanismo de contracción muscular y en la coagulación entre otros procesos. El magnesio es imprescindible para la acción catalítica de muchas enzimas.

Función de los oligoelementos
Son necesarios para el funcionamiento de la célula y suelen asociarse a enzimas. El hierro participa en los procesos redox de la cadena respiratoria y forma parte de la hemoglobina. El cobre forma parte de múltiples enzimas de oxidación. El cobalto y el molibdeno forman parte de coenzimas. El yodo es fundamental para la hormona del tiroides y el flúor en la formación de los dientes.

Como resumen aquí os dejo un par de excelentes esquemas sacados de http://cienciasnaturales.es


Aquí podéis ver otro resumen del tema:

viernes, 6 de mayo de 2011

Actividades Película: Dante's Peak

En este tema, después de las explicaciones de clase veremos la película: Un pueblo llamado Dante's Peak, en la que un prestigioso vulcanólogo (todavía afectado por la muerte de su esposa en la erupción del monte Pinatubo), detecta una peligrosa actividad sísmica y avisa de una posible erupción en las cercanías de Dante’s Peak, un tranquilo pueblecito del Noroeste coronado por un inmenso volcán apagado. Pero nadie da crédito a sus avisos hasta que ya es demasiado tarde. El volcán entra en erupción y la población, dominada por el pánico intenta huir. Harry intentará escapar con la alcaldesa (Linda Hamilton) y sus hijos.

Durante el visionado de la película deberéis saber distinguir entre Predicción, prevención y previsión:

LOS RIESGOS NATURALES. LA REGLA DE LAS TRES PES (predicción, previsión y prevención)
Al estudiar los riesgos naturales, se pretende conocer y controlar los procesos q los definen. De esta manera se determinan los factores de riesgo.
Se trata de identificar los procesos y los factores de riesgo que pueden suponer peligro para una población o una zona determinada.
Predicción se pretende conocer y anunciar antes de que suceda un fenómeno.  
Previsión profundiza más en el estudio del riesgo ya que permite definir estadísticamente con anticipación, la probabilidad de que suceda un fenómeno y sus diferentes niveles de intensidad.  
Prevención engloba todas aquellas medidas y actividades basadas en la predicción y la prevision práctica para eciliar el impacto.


ACTIVIDAD: UN PUEBLO LLAMADO DANTE’S PEAK (1997) 

Después de visionar la película responde a las siguientes preguntas justificando tus respuestas. Ten en cuenta que el volcán ficticio de la película se localiza en la Cordillera de las Cascadas, en el NO de Estados Unidos (mismo contexto geológico que el volcán Santa Elena; éste último sí es real y su última erupción importante
se produjo en 1980). Por tanto, el volcán caracterizado en la película  es un volcán compuesto o estratovolcán.

1. Observa la erupción del volcán Dante’s Peak. Teniendo en cuenta su tipología ¿Qué piensas de las coladas de lava? (para contestar la pregunta ten en cuenta su viscosidad, velocidad, proximidad o lejanía al cráter, simultaneidad con otros tipos de manifestaciones volcánicas,…). 

Investiga: tipología de coladas de lava simultáneas a una erupción explosiva con flujos piroclásticos.

2. Piensa sobre la escena en la que el geólogo escapa con la alcaldesa y sus hijos en el todoterreno
atravesando una colada de lava ¿Crees que es posible? ¿Por qué? 


Investiga: temperatura de la lava. 

3.  Teniendo en cuenta la composición y densidad de la ceniza volcánica. ¿Crees que está bien caracterizada la película?

Investiga: densidad de la ceniza volcánica. 

4.  Cuando el geólogo, la alcaldesa, los niños y su abuela escapan de la erupción en una barca atravesando un lago ¿Crees que la escena podría ocurrir en la realidad? 

Investiga: dióxido de azufre, ácido sulfúrico y volcanes.

5.  Antes de la erupción “la niña protagonista” descubre los cuerpos de una pareja que se estaba bañando en las aguas termales del volcán. ¿Es real esta escena?

Investiga: cambios de temperatura, aguas termales, volcanes y terremotos. 

6.  Antes de la erupción el geólogo descubre pequeños animales muertos. ¿Es posible?

Investiga: emisiones de dióxido de carbono, animales, vegetación  y volcanes.

7.  El geólogo protagonista de la película analiza la composición química del agua potable del depósito municipal de Dante’s Peak. ¿Puede la actividad volcánica cambiar esta composición?

Investiga: agua potable, composición química, actividad volcánica. 

8.  A lo largo de la película el equipo de vulcanólogos (incluido el protagonista principal, Pierce Brosnan) usa varios instrumentos para poder predecir el comportamiento del volcán y la erupción principal. Podrías enumerar algunos de esos métodos?

Investiga: predicción de erupciones volcánicas.

9.  Durante los momentos iniciales de la erupción el pueblo de Dante’s Peak es sacudido por un terremoto que provoca una gran devastación. ¿Son frecuentes estos terremotos de magnitud alta durante las erupciones volcánicas?

Investiga: magnitud terremotos volcánicos.

10.  ¿Puede la ceniza volcánica derribar el helicóptero?

Investiga: erupciones volcánicas, aviones, helicópteros.

11.   En una de las escenas finales, la última de las furgonetas del convoy de evacuación que conducía el jefe del equipo de científicos es arrastrada por un río. ¿Es real esta escena?

Investiga: lahar, erupciones volcánicas.   
______________________________________________________________________________

Para descargar la actividad pincha aquí

miércoles, 30 de marzo de 2011

Inmunología

martes, 29 de marzo de 2011

Microbiología: Reino Moneras (Archaea y Eubacterias)

Una de las características del reino moneras es que se reproducen asexualmente, aunque presentan mecanismos de transferencia de genes; es la llamada sexualidad bacteriana.
El biólogo neoyorquino Stephen Jay Gould afirmaba que estamos en un mundo esencialmente bacteriano. No sólo porque durante la primera mitad de la historia de la vida nada hubo más que bacterias, sino porque sus extraordinarias características han permitido que se extiendan por todas partes.
Los procariotas se reproducen de forma eficaz por fisión binaria (un tipo de reproducción asexual), aunque poseen mecanismos muy imaginativos para intercambiar material genético con las vecinas, lo que se considera un proceso de parasexualidad. Presentan metabolismos muy variados que les permiten ocupar, prácticamente, todos los hábitats terrestres y, aunque algunas producen graves enfermedades, su papel ecológico como descomponedores es fundamental: al degradar los cadáveres y restos orgánicos de otros seres vivos, liberan compuestos inorgánicos utilizables por los organismos autótrofos. Este reciclado de nutrientes es básico para que la vida siga existiendo.
Las bacterias son células muy sencillas; carecen de núcleo y tampoco presentan orgánulos en el citoplasma. Son organismos unicelulares y se encuentran en todos los ecosistemas.
Probablemente son los primeros organismos que surgieron en nuestro planeta. Existen rastros fósiles de hace 3.800 millones de años.
En la clasificación de los Dominios, Woese, aparecen dos grupos de Procariotas:
Dominio Archaea, que engloba a los organismos más antiguos del Planeta
Dominio Bacteria, en el que se encuentran la gran mayoría de los organismos bacterianos actuales, también conocidos con el nombre de Eubacterias.
Analizando los ARN ribosómicos recientemente se ha llegado a la conclusión de que las primeras células procariotas evolucionaron hacia por dos grupos distintos, las eubacterias, que son la mayoría de las bacterias actuales, y las arqueobacterias, de características diferentes.

Las arqueobacterias difieren de las eubacterias actuales en:
- Son más parecidas a las células primitivas.
- Viven en medios muy hostiles de salinidad, temperatura (hasta 105º C), acidez (pH óptimo de 2)... en los que no lo pueden hacer las eubacterias.
- Membrana celular y pared bacteriana con diferente composición química.
- Distintas rutas metabólicas.
- ARNt y ARNr distintos a los de los demás organismos.

TIPOS DE BACTERIAS
Pueden tener entre 1 y 10 μ de longitud. Gran capacidad reproductora y de adaptación a diferente medios, por lo que colonizan todos los ambientes.
En cuanto a su forma se distinguen 4 tipos principales:

Las bacterias pueden presentarse como individuos sueltos, o formando colonias. Se pueden encontrar colonias de diplococos (bacterias redondeadas, de dos en dos), diplobacilos (bacterias alargadas, de dos en dos), estreptococos (cordones de bacterias redondeadas), estafilococos (masas laminares de bacterias redondeadas) o sarcinas (conglomerados tridimensonales de bacterias redondeadas).
Son ubícuas, creciendo en el suelo, manantiales calientes ácidos, desechos radioactivos, en el mar y en las profundidades de la corteza terrestre.
Pueden sobrevivir en el frío y vacío extremos del espacio exterior.
Hay 40 millones de células bacterianas en un gramo de tierra y un millón de células bacterianas en un mililitro de agua dulce. En total, hay unas 5×1030 bacterias en el mundo.
Las bacterias son imprescindibles para el reciclaje de los nutrientes, los ciclos nutrientes dependen de bacterias.

ESTRUCTURA BACTERIANA

Vaina o cápsula bacteriana

Este componente no aparece en todas las bacterias. Está formada por polímeros glucídicos que no llegan a formar una estructura definida, con un tamaño entre 10-40nm. Esta cápsula es capaz de retener agua, con lo que actúa como reservorio de agua. También sirve de sustrato para los desplazamientos de las células que la poseen, pues éstas no disponen de flagelos. Sirve además como matriz adherente entre las bacterias, sin llegar a formar una auténtica colonia. Impide la acción fagocítica de otras células dificultando el reconocimiento de la bacteria, por lo que también cumple una función defensiva. Pueden o no formarla dependiendo de las condiciones del cultivo.

Pared bacteriana
Estructura rígida y resistente, de 10 a 100 nm de espesor, que aparece en la mayoría de las células bacterianas, dándoles forma y protección física (debido a que las bacterias viven en ocasiones en medios hipotónicos deben soportar elevadas presiones osmóticas). El entramado estructural está formado por cadenas polisacáridas paralelas, unidas por medio de cadenas polipeptídicas transversales, que le dan forma de red y le proporcionan rigidez.
La pared bacteriana se puede reconocer mediante la tinción Gram, que permite distinguir dos tipos de paredes bacterianas:

Bacterias Gram +: son bacterias con paredes anchas, formadas por gran cantidad de capas de peptidoglucanos unidos entre sí.
La pared de las Gram + es gruesa, de unos 50 nm de espesor y el peptidoglicano está asociado a otras moléculas, con lo cual son más susceptibles al ataque de ciertas sustancias. La mureína es un peptidoglicano formado por una red de N-acetilglucosamina y N-acetilmurámico, que poseen enlazados cadenas de 4 Aa: L-Ala, D-isoglutámico-L-Lys-D-Ala. Aquí monoestratificada con proteínas, polisacáridos y ácidos teicoicos.

 Bacterias Gram -: son bacterias con paredes estrechas, con una capa de peptidoglucanos, rodeada de una bicapa lipídica muy permeable. Este tipo de bacterias son más resistentes a los antibióticos.
En las gram -, por tanto es biestratificada, doble membrana plasmática con una capa de peptidoglicano mureina y sobre ella, otra formada fundamentalmente por lípidos, con lipopolisacáridos (ácidos grasos, acetilglucosamina, grupos fosfato y glúcidos. que son responsables de su resistencia a agentes bactericidas.

La función de la pared bacteriana consiste en impedir el estallido de la célula por la entrada masiva de agua. Éste es uno de los mecanismos de actuación de los antibióticos; crean poros en las paredes bacterianas, provocando la turgencia en la bacteria hasta conseguir que estalle.
  • Es responsable de la virulencia de muchas bacterias
  • En ella residen los antígenos bacterianos
  • Preserva a la bacteria de la acción de antibióticos.
  • Regula paso de iones.

 Las Gram + se tiñen de violeta y las Gram -, de rojo.

 Membrana plasmática
Envoltura que rodea al citoplasma. está formada por una bicapa de fosfolípidos. No contiene colesterol. la bicapa lipídica está atravesada por gran cantidad de proteínas (80%), relacionadas con las distintas actividades celulares.
En la membrana aparecen grandes repliegues, denominados mesosomas. Estos mesosomas realizan varias funciones, tales como servir de anclaje para el ADN bacteriano, intervenir en la división celular (bipartición), o ser el lugar donde se realiza parte de la respiración celular en las bacterias aerobias. También se encuentran las moléculas necesarias para realizar la fotosíntesis en bacterias fotosintéticas.

Citoplasma
Es el espacio que se encuentra dentro de la membrana plasmática. Contiene inclusiones cristalinas, sustancias de reserva, gotas lipídicas, enzimas y otras proteínas.
Se encuentran ribosomas 70s y una región densa, donde se encuentra el ADN bacteriano; esta región no se encuentra separada del resto del citoplasma por ninguna membrana. El ADN bacteriano es ADN bicatenario, circular.
Algunas bacterias presentan ADN extracromosómico. Este ADN se denomina plásmido. Los plásmidos están relacionados con la resistencia a antibióticos u otras sustancias tóxicas para la célula. también son necesarios para unir la bacteria a una superficie, ya sea a una macromolécula alimenticia, a un líquido, o a otra célula para realizar un tipo concreto de reproducción, denominada conjugación. Para poder realizar esta conjugación, el plásmido debe contener información para la formación de pili.

Algunas bacterias presentan flagelos. Estos flagelos atraviesan la pared celular y permiten el desplazamiento de la bacteria. También pueden encontrarse pili.

Algunas bacterias son capaces de formar estructuras de resistencia, llamadas endosporas, cuando aparecen condiciones adversas en el medio en el que vive.
Son resistentes a la radiación ultravioleta y gamma, a la desecación, a lisozima, a la temperatura, al hambre y a los desinfectantes químicos. Las endosporas se encuentran comúnmente en el suelo y el agua donde sobreviven por periodos de tiempo largos.

sábado, 26 de febrero de 2011

Microbiología - Los virus

La palabra virus significa veneno. Antiguamente se utilizaba para designar a todo aquello que producía enfermedad. Actualmente, se utiliza para referirse a estructuras microscópicas que no son retenidas por filtros para bacterias y que son patógenos para todo tipo de seres vivos.
La observación de los virus sólo puede hacerse mediante el uso del microscopio electrónico, debido a su pequeño tamaño.
Los virus son estructuras acelulares que no son activos fuera de las células. Si se encuentran en el exterior celular reciben el nombre de viriones. En el interior celular son capaces de controlar la maquinaria metabólica, utilizándola para su replicación. Por ello, los virus no se consideran aún seres vivos, asunto que en mi opinión, los científicos revisarán para poder incluirlos.
1. ESTRUCTURA
Un virus, fuera de una célula, presenta las siguientes partes:
Ácido nucleico enrollado: puede ser ADN o ARN. Cualquiera de estos ácidos puede presentarse en forma monocatenaria o bicatenaria.
Cápsida: cubierta proteica que protege y aísla el ácido nucleico. Recibe también el nombre de cápsula vírica y presenta distintas formas.  Esta estructura está formada por una única proteína que se repite. Cada una de estas unidades proteicas se denomina capsómero.
Otras proteínas: Además de los capsómeros (proteínas estructurales) algunos virus puede llevar  proteínas enzimáticas  como las implicadas en la transcripción de su material genético, y proteínas aglutinantes, que interactúan con los receptores celulares y capacitan al virión para infectar a la célula hospedadora. 
Algunos virus presentan una  envoltura membranosa, perteneciente a la célula que ha infectado.  Dicha capa posee una serie de  glucoproteínas integrales de membrana propias del  virus. Esta envoltura facilita la infección  de otras células de la misma estirpe celular que la célula infectada.  A menudo estas proteínas presentan nuevas variantes indetectables para el sistema inmunológico del huésped, como las hemaglutininas (Hn) y neuraminidadas (Nn) del virus de la gripe.  
II.  CLASIFICACIÓN DE LOS VIRUS
Los virus se pueden clasificar, atendiendo a distintos criterios:

A.  Atendiendo al tipo de ácido nucleico: 
  • Tipo I: ADN bicatenario, es decir, de dos hebras de ADN. (Adenovirus, Herpesvirus, bacteriófagos T4 y λ.
  • Tipo II: ADN monocatenario, es decir, de una hebra de ADN. Muchos bacteriófagos presentan este tipo de material genético. 
  • Tipo III: ARN binatenario. Se transcribe de ARN a ARN mensajero. Ejemplo Reovirus 
  • Tipo IV: ARN monocatenario (+). No es necesaria su transcripción. Se lee directamente como ARN mensajero. Ejemplo: Poliovirus.
  • Tipo V: ARN monocatenario (-). Se transcribe a ARN mensajero. Ejemplo: Rhabdovirus, Influenzavirus (gripe etc.)
  • Tipo VI: ARN monocatenario (+). El ARN es transcrito a ADN utilizando una enzima llamada transcriptasa inversa. Posteriormente, el ADN sintetizado es transcrito a ARN. Se denominan retrovirus. Ejemplo VIH.
B.  Atendiendo a la forma de la cápsida del virus: 
Virus  helicoidales: cápsidas alargadas, donde los capsómeros se disponen de forma helicoidal en torno al ácido nucleico. Estos virus infectan células vegetales.
  • Virus (poliédricos) icosaédricos: cápsidas redondeadas con capsómeros triangulares. Estos virus infectan células animales.
  • Virus mixtos, o complejos: cápsidas con una zona icosaédrica, seguida de  vaina contráctil  helicoidal  que acaba en una base hexagonal, de la que emergen cortas espinas de anclaje.
C.   Atendiendo a la célula que infectan:
  • Virus vegetales: atacan células vegetales. Cápsidas de forma helicoidal.
  • Virus animales: atacan células animales. Cápsidas de forma icosaédrica.
  • Virus bacterianos, bacteriófagos o fagos: atacan bacterias. Cápsidas de forma mixta.
D.  Atendiendo a la envoltura lipídica:
  • Virus desnudos: sin envoltura
  • Virus con envoltura: La mayoría de los virus animales poseen una doble capa lipídica recubriendo a la cápsida. Ejemplos característicos son el VIH y El virus de la gripe. 

III.  CICLOS DE INFECCIÓN DE VIRUS
 Los  viriones  o partículas víricas  (virus en fase extracelular) no realizan ninguna actividad fisiológica, por lo que no requieren sintetizar proteínas ni utilizan energía; son estructuras inertes. Así, el ácido nucleico viral se replica a expensas de la maquinaria y la energía de la célula infectada.
Existen dos sistemas de replicación de virus, el ciclo lítico y el ciclo lisogénico. La explicación de estos ciclos viene referida a la que se da en virus bacteriófagos como el fago λ cuyo genoma es una molécula de ADN de cadena doble.

A.  Ciclo lítico
Se denomina así porque la célula infectada muere por rotura al liberarse las nuevas copias virales. Consta de las siguientes fases:
1.  Fase de adsorción o fijación: El virus se une a la célula hospedadora de forma estable. La unión es específica ya que el virus reconoce complejos moleculares de tipo proteico, lipoproteico o glucoproteico, presentes en las membranas celulares.
2.  Fase de penetración o inyección: el ácido nucleico viral entra en la célula mediante una perforación que el virus realiza en la pared bacteriana.
3.  Fase de eclipse: en esta fase no se observan copias del virus en la célula, pero se está produciendo la síntesis de ARN, necesario para generar las copias de proteínas de la cápsida. También se produce la continua formación de ácidos nucleicos virales y enzimas destructoras del ADN bacteriano.
4.  Fase de ensamblaje: en esta fase se produce la unión de los capsómeros para formar la cápsida y el empaquetamiento del ácido nucleico viral dentro de ella.
5.  Fase de lisis o ruptura: conlleva la muerte celular. Los viriones salen de la célula, mediante la rotura enzimática de la pared bacteriana. Estos nuevos virus se encuentran en situación de infectar una nueva célula.
Este ciclo se da también en virus animales con envoltura. En este caso las glucoproteínas víricas de la envoltura son sintetizadas en los ribosomas del RER y se integran en la membrana plasmática celular.  Quedarán incorporadas a la envuelta lipídica cuando se produce la exocitosis de los nuevos virus.

B.  Ciclo lisogénico
Las dos primeras fases de este ciclo son iguales a las descritas en el ciclo anterior. En la fase de eclipse el ácido nucleico viral en forma de ADN bicatenario recombina con el ADN bacteriano, introduciéndose en éste como un gen más. Esta forma viral se denomina profago, o virus atenuado, mientras que la célula infectada se denomina célula lisogénica.
En este estado el profago puede mantenerse durante un tiempo indeterminado, pudiendo incluso, reproducirse la célula, generando nuevas células hijas lisogénicas. El profago  se mantendrá latente hasta producirse un cambio en el medio ambiente  celular que provoque un cambio celular, por ejemplo, por variaciones bruscas de temperatura, o desecación, o disminución en la concentración de oxígeno. Este cambio induce a la liberación del profago, transformándose en un virus activo que continúa el ciclo de infección hasta producir la muerte celular y la liberación de nuevos virus.


IV.  VIRUS Y CÁNCER
Algunos  virus tienen la capacidad de producir transformaciones tumorales (benignas o malignas) en las células: son los virus oncogénicos. Varias familias de  virus ADN son cancerígenos, pero entre los virus ARN solo los retrovirus presentan esta capacidad.
Existen dos mecanismos:
-Inserción del ADN del virus en el genoma de la célula huésped si se inactiva un gen represor tumoral. En otras ocasiones se ve involucrado un gen regulador del ciclo celular.
- La transformación oncogénica puede deberse también a una proteína codificada por un gen propio del virus (oncogen).
En esta presentación tienes un resumen de todo lo que acabamos de ver:


Si prefieres descargártela, hazlo desde aquí